Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 488
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 447-454, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38597435

OBJECTIVE: To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS: SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS: Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION: HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.


Cognitive Dysfunction , Hepatolenticular Degeneration , Rats , Animals , Rats, Sprague-Dawley , Hepatolenticular Degeneration/drug therapy , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 12/metabolism , Copper/metabolism , Copper/pharmacology , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Apoptosis , Hippocampus/metabolism , Apoptosis Regulatory Proteins/metabolism , Penicillamine/pharmacology , Cognitive Dysfunction/drug therapy , RNA, Messenger
2.
Chin J Integr Med ; 30(5): 398-407, 2024 May.
Article En | MEDLINE | ID: mdl-38386253

OBJECTIVE: To investigate the pharmacological mechanism of Qili Qiangxin Capsule (QLQX) improvement of heart failure (HF) based on miR133a-endoplasmic reticulum stress (ERS) pathway. METHODS: A left coronary artery ligation-induced HF after myocardial infarction model was used in this study. Rats were randomly assigned to the sham group, the model group, the QLQX group [0.32 g/(kg·d)], and the captopril group [2.25 mg/(kg·d)], 15 rats per group, followed by 4 weeks of medication. Cardiac function such as left ventricular ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximal rate of increase of left ventricular pressure (+dp/dt max), and the maximal rate of decrease of left ventricular pressure (-dp/dt max) were monitored by echocardiography and hemodynamics. Hematoxylin and eosin (HE) and Masson stainings were used to visualize pathological changes in myocardial tissue. The mRNA expression of miR133a, glucose-regulated protein78 (GRP78), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), X-box binding protein1 (XBP1), C/EBP homologous protein (CHOP) and Caspase 12 were detected by RT-PCR. The protein expression of GRP78, p-IRE1/IRE1 ratio, cleaved-ATF6, XBP1-s (the spliced form of XBP1), CHOP and Caspase 12 were detected by Western blot. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the rate of apoptosis. RESULTS: QLQX significantly improved cardiac function as evidenced by increased EF, FS, LVSP, +dp/dt max, -dp/dt max, and decreased LVEDP (P<0.05, P<0.01). HE staining showed that QLQX ameliorated cardiac pathologic damage to some extent. Masson staining indicated that QLQX significantly reduced collagen volume fraction in myocardial tissue (P<0.01). Results from RT-PCR and Western blot showed that QLQX significantly increased the expression of miR133a and inhibited the mRNA expressions of GRP78, IRE1, ATF6 and XBP1, as well as decreased the protein expressions of GRP78, cleaved-ATF6 and XBP1-s and decreased p-IRE1/IRE1 ratio (P<0.05, P<0.01). Further studies showed that QLQX significantly reduced the expression of CHOP and Caspase12, resulting in a significant reduction in apoptosis rate (P<0.05, P<0.01). CONCLUSION: The pharmacological mechanism of QLQX in improving HF is partly attributed to its regulatory effect on the miR133a-IRE1/XBP1 pathway.


Drugs, Chinese Herbal , Endoplasmic Reticulum Stress , Heart Failure , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Endoplasmic Reticulum Stress/drug effects , Drugs, Chinese Herbal/pharmacology , Heart Failure/drug therapy , Heart Failure/genetics , Male , Rats, Sprague-Dawley , Capsules , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Endoplasmic Reticulum Chaperone BiP , Apoptosis/drug effects , Caspase 12/metabolism , Caspase 12/genetics , Myocardium/pathology , Myocardium/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Rats , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37958604

Environmental factors, including pesticide exposure, have been identified as substantial contributors to neurodegeneration and cognitive impairments. Previously, we demonstrated that repeated exposure to deltamethrin induces endoplasmic reticulum (ER) stress, reduces hippocampal neurogenesis, and impairs cognition in adult mice. Here, we investigated the potential relationship between ER stress and hippocampal neurogenesis following exposure to deltamethrin, utilizing both pharmacological and genetic approaches. To investigate whether ER stress is associated with inhibition of neurogenesis, mice were given two intraperitoneal injections of eIf2α inhibitor salubrinal (1 mg/kg) at 24 h and 30 min prior to the oral administration of deltamethrin (3 mg/kg). Salubrinal prevented hippocampal ER stress, as indicated by decreased levels of C/EBP-homologous protein (CHOP) and transcription factor 4 (ATF4) and attenuated deltamethrin-induced reductions in BrdU-, Ki-67-, and DCX-positive cells in the dentate gyrus (DG) of the hippocampus. To further explore the relationship between ER stress and adult neurogenesis, we used caspase-12 knockout (KO) mice. The caspase-12 KO mice exhibited significant protection against deltamethrin-induced reduction of BrdU-, Ki-67-, and DCX-positive cells in the hippocampus. In addition, deltamethrin exposure led to a notable upregulation of CHOP and caspase-12 expression in a significant portion of BrdU- and Ki-67-positive cells in WT mice. Conversely, both salubrinal-treated mice and caspase-12 KO mice exhibited a considerably lower number of CHOP-positive cells in the hippocampus. Together, these findings suggest that exposure to the insecticide deltamethrin triggers ER stress-mediated suppression of adult hippocampal neurogenesis, which may subsequently contribute to learning and memory deficits in mice.


Apoptosis , Pyrethrins , Mice , Animals , Caspase 12/metabolism , Bromodeoxyuridine/pharmacology , Ki-67 Antigen/metabolism , Pyrethrins/metabolism , Hippocampus/metabolism , Neurogenesis/physiology , Endoplasmic Reticulum Stress
4.
Cell Stress Chaperones ; 28(6): 709-720, 2023 11.
Article En | MEDLINE | ID: mdl-37368180

The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.


Hypothyroidism , Melissa , Rats , Animals , Melissa/metabolism , Endoplasmic Reticulum-Associated Degradation , bcl-2-Associated X Protein/metabolism , Caspase 12/metabolism , Brain/metabolism , Apoptosis , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Hypothyroidism/pathology , Endoplasmic Reticulum Stress
5.
Ecotoxicol Environ Saf ; 260: 115073, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37257342

Aflatoxin B1 (AFB1) is extremely carcinogenic and can cause liver cancer in humans and animals with continued ingestion. As a natural compound, curcumin (Cur) exhibits excellent anti-inflammatory, and anti-cancer properties with few side effects. In this study, a total of 60 male mice (6-week-olds, 15 per group). After one week of acclimatization feeding, the mice were divided into control group (Con), AFB1 group, curcumin group (Cur), and AF+Cur group. The mice were gavaged with curcumin (Cur, 100 mg/kg) and/or AFB1 (0.75 mg/kg). To identify a new therapeutic target for AFB1-induced pyroptosis, we performed proteomic profiling for curcumin alleviating liver injury caused by AFB1 to further validate the targets through volcano plot analysis, Venn analysis, heatmap analysis, correlation, cluster analysis, GO and KEGG enrichment. AFB1 exposure resulted in the loss of hepatocyte membrane, swelling of the endoplasmic reticulum, and a significant increase in transaminase (ALT and AST) contents, while curcumin greatly improved these changes. We found that differentially expressed proteins are enriched in the endoplasmic reticulum membrane and identified ITPR2 as a target of curcumin that alleviates AFB1-induced liver injury by proteomics. Furthermore, ITPR2 expression was detected by immunofluorescence, and qRT-PCR for mRNA expression of genes downstream of ITPR2 (calpain1, calpain2, caspase-12, caspase-3). ITPR2-activated endoplasmic reticulum stress-related proteins (calpain1, calpaini2, bcl-2, BAX, cl-caspase-12, cl-caspase-3), apoptosis (PARP) and pyroptosis (DFNA5) related proteins were examined by western blotting. The analysis showed that it effectively prevents AFB1-induced pyroptosis by lowering endoplasmic reticulum stress via interfering with ITPR2 and its downstream proteins (calpain1, calpain2, bcl-2, Bax) and inhibiting caspase-12/caspase-3 pathway. Conclusively, this study applied proteomic profiling to elucidate ITPR2 as a new target, which might give a new perspective on the mechanism of curcumin alleviating AFB1-induced pyroptosis.


Curcumin , Pyroptosis , Male , Mice , Humans , Animals , Caspase 3/metabolism , Aflatoxin B1 , Curcumin/pharmacology , bcl-2-Associated X Protein/metabolism , Proteomics , Caspase 12/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Inositol 1,4,5-Trisphosphate Receptors
6.
Chin J Integr Med ; 29(1): 19-27, 2023 Jan.
Article En | MEDLINE | ID: mdl-36369612

OBJECTIVE: To investigate the protective effects and its possible mechanism of Wuzi Yanzong Pill (WYP) on Parkinson's disease (PD) model mice. METHODS: Thirty-six C57BL/6 male mice were randomly assigned to 3 groups including normal, PD, and PD+WYP groups, 12 mice in each group. One week of intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the classical PD model in mice. Meanwhile, mice in the PD+WYP group were administrated with 16 g/kg WYP, twice daily by gavage. After 14 days of administration, gait test, open field test and pole test were measured to evaluate the movement function. Tyrosine hydroxylase (TH) neurons in substantia nigra of midbrain and binding immunoglobulin heavy chain protein (GRP78) in striatum and cortex were observed by immunohistochemistry. The levels of TH, GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1α, XBP1, ATF6, CHOP, ASK1, p-JNK, Caspase-12, -9 and -3 in brain were detected by Western blot. RESULTS: Compared with the PD group, WYP treatment ameliorated gait balance ability in PD mice (P<0.05). Similarly, WYP increased the total distance and average speed (P<0.05 or P<0.01), reduced rest time and pole time (P<0.05). Moreover, WYP significantly increased TH positive cells (P<0.01). Immunofluorescence showed WYP attenuated the levels of GRP78 in striatum and cortex. Meanwhile, WYP treatment significantly decreased the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1 α, XBP1, CHOP, Caspase-12 and Caspase-9 (P<0.05 or P<0.01). CONCLUSIONS: WYP ameliorated motor symptoms and pathological lesion of PD mice, which may be related to the regulation of unfolded protein response-mediated signaling pathway and inhibiting the endoplasmic reticulum stress-mediated neuronal apoptosis pathway.


Neuroprotective Agents , Parkinson Disease , Mice , Male , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Endoribonucleases/metabolism , Endoplasmic Reticulum Chaperone BiP , Caspase 12/metabolism , Protein Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Unfolded Protein Response , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal
7.
Antioxid Redox Signal ; 38(16-18): 1150-1166, 2023 06.
Article En | MEDLINE | ID: mdl-36401517

Aims: Reactive oxygen species are highly reactive molecules generated in different subcellular compartments. Both the dopamine D5 receptor (D5R) and endoplasmic reticulum (ER)-resident peroxiredoxin-4 (PRDX4) play protective roles against oxidative stress. This study is aimed at investigating the interaction between PRDX4 and D5R in regulating oxidative stress in the kidney. Results: Fenoldopam (FEN), a D1R and D5R agonist, increased PRDX4 protein expression, mainly in non-lipid rafts, in D5R-HEK 293 cells. FEN increased the co-immunoprecipitation of D5R and PRDX4 and their colocalization, particularly in the ER. The efficiency of Förster resonance energy transfer was increased with FEN treatment measured with fluorescence lifetime imaging microscopy. Silencing of PRDX4 increased hydrogen peroxide production, impaired the inhibitory effect of FEN on hydrogen peroxide production, and increased the production of interleukin-1ß, tumor necrosis factor (TNF), and caspase-12 in renal cells. Furthermore, in Drd5-/- mice, which are in a state of oxidative stress, renal cortical PRDX4 was decreased whereas interleukin-1ß, TNF, and caspase-12 were increased, relative to their normotensive wild-type Drd5+/+ littermates. Innovation: Our findings demonstrate a novel relationship between D5R and PRDX4 and the consequent effects of this relationship in attenuating hydrogen peroxide production in the ER and the production of proinflammatory cytokines. This study provides the potential for the development of biomarkers and new therapeutics for renal inflammatory disorders, including hypertension. Conclusion: PRDX4 interacts with D5R to decrease oxidative stress and inflammation in renal cells that may have the potential for translational significance. Antioxid. Redox Signal. 38, 1150-1166.


Hydrogen Peroxide , Receptors, Dopamine D5 , Mice , Humans , Animals , Receptors, Dopamine D5/metabolism , Interleukin-1beta/metabolism , Hydrogen Peroxide/metabolism , Caspase 12/metabolism , HEK293 Cells , Kidney/metabolism , Fenoldopam/metabolism , Fenoldopam/pharmacology , Oxidative Stress , Inflammation/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism
8.
Brain Behav ; 12(12): e2786, 2022 12.
Article En | MEDLINE | ID: mdl-36377337

AIM: The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism. METHOD: Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining. RESULT: In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator. CONCLUSION: TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.


Brain Injuries, Traumatic , Endoribonucleases , Animals , Mice , Apoptosis/drug effects , Benzylisoquinolines/pharmacology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Caspase 12/metabolism , Caspase 3/metabolism , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/drug effects , Neurons/metabolism , Neurons/pathology , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 1/metabolism , TNF Receptor-Associated Factor 1/pharmacology , Transcription Factor CHOP/drug effects , Transcription Factor CHOP/metabolism , Tumor Necrosis Factor-alpha/metabolism , Water/metabolism , Water/pharmacology , Disease Models, Animal
9.
Neuroreport ; 33(18): 819-827, 2022 12 14.
Article En | MEDLINE | ID: mdl-36367791

Hyperglycemia-induced neuronal endoplasmic reticulum (ER) stress is particularly important for the pathogenesis of diabetic encephalopathy. Spermidine (Spd) has neuroprotection in several nervous system diseases. Our current study to explore the potential protective role of Spd in hyperglycemia-induced neuronal ER stress and the underlying mechanisms. HT22 cells were treated with high glucose (HG) to establish an in-vitro model of hyperglycemia toxicity. The HT22 cells' activity was tested by cell counting kit-8 assay. RNA interference technology was used to silence the expression of growth differentiation factor 11 (GDF11) in HT22 cells. The GDF11 expression levels of mRNA were assessed using reverse transcription-PCR (RT-PCR). Western blotting analysis was applied to evaluate the expressions of GRP78 and cleaved caspase-12. Spd markedly abolished HG-exerted decline in cell viability as well as upregulations of GRP78 and cleaved caspase-12 in HT22 cells, indicating the protection of Spd against HG-induced neurotoxicity and ER stress. Furthermore, we showed that Spd upregulated the expression of GDF11 in HG-exposed HT22 cells. While, silenced GDF11 expression by RNA interference reversed the protective effects of Spd on HG-elicited neurotoxicity and ER stress in HT22 cells. These results indicated that Spd prevents HG-induced neurotoxicity and ER stress through upregulation of GDF11. Our findings identify Spd as a potential treatment for diabetic encephalopathy as well as ER stress-related neurologic diseases.


Brain Diseases , Hyperglycemia , Humans , Endoplasmic Reticulum Stress , Spermidine/pharmacology , Up-Regulation , Caspase 12/metabolism , Apoptosis , Glucose/metabolism , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology
10.
Oxid Med Cell Longev ; 2022: 5992436, 2022.
Article En | MEDLINE | ID: mdl-36262286

Endoplasmic reticulum (ER) stress, pyroptosis, and apoptosis are critical molecular events in the occurrence and progress of renal ischemia reperfusion (I/R) injury. Naringenin (4',5,7-trihydroxyflavanone) is one of the most widely consumed flavonoids with powerful antioxidant and anti-inflammatory activities. However, whether naringenin is able to relieve renal I/R injury and corresponding mechanisms have not been fully clarified. This study was aimed at exploring its role and relevant mechanisms in renal I/R injury. The C57Bl/6 mice were randomly assigned to receive administration with naringenin (50 mg/kg/d) or sterile saline (1.0 mL/d) for 3 d by gavage and suffered from renal I/R surgery. One specific ER stress inhibitor, 4-phenylbutyric acid (4-PBA, 100 mg/kg/d), was intraperitoneally administered to validate the regulation of ER stress on pyroptosis and apoptosis. Cultured HK-2 cells went through the process of hypoxia/reoxygenation (H/R) to perform cellular experiments with the incubation of naringenin (200 µM), 4-PBA (5 mM), or brusatol (400 nM). The animal results verified that naringenin obviously relieved renal I/R injury, while it refined renal function and attenuated tissue structural damage. Furthermore, naringenin treatment inhibited I/R-induced ER stress as well as pyroptosis and apoptosis as indicated by decreased levels of specific biomarkers such as GRP78, CHOP, caspase-12, NLRP3, ASC, caspase-11, caspase-4, caspase-1, IL-1ß, GSDMD-N, BAX, and cleaved caspase-3 in animals and HK-2 cells. Besides, the upregulated expression of Nrf2 and HO-1 proteins after naringenin treatment suggested that naringenin activated the Nrf2/HO-1 signaling pathway, which was again authenticated by the usage of brusatol (Bru), one unique inhibitor of the Nrf2 pathway. Importantly, the application of 4-PBA showed that renal I/R-generated pyroptosis and apoptosis were able to be regulated by ER stress in vivo and in vitro. In conclusion, naringenin suppressed ER stress by activating Nrf2/HO-1 signaling pathway and further alleviated pyroptosis and apoptosis to protect renal against I/R injury.


Flavanones , Reperfusion Injury , Animals , Mice , Antioxidants , Apoptosis/physiology , bcl-2-Associated X Protein , Caspase 12/metabolism , Caspase 3/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Kidney/metabolism , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction
11.
Ecotoxicol Environ Saf ; 244: 114042, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-36087467

The molecular mechanisms of PM2.5 exposure in the male reproductive system, have scarcely been studied. Here, we demonstrate the possible relationship and molecular mechanisms between endoplasmic reticulum stress (ERS), oxidative stress, and reproductive toxicity caused by PM2.5. A "PM2.5 real-time online concentrated animal whole-body exposure system" was employed to expose male Wistar rats to PM2.5 for 12 weeks, which could induce sperm quality decline, apoptosis, inflammation, oxidative stress, ERS, and histopathological damage in the testis. In vitro study on cultured primary testicular spermatogonia and Leydig cells confirmed that treatment with PM2.5 (0-320 µg/mL) for 24 h decreased cell survival rate, increased reactive oxygen species, lactate dehydrogenase and 8-hydroxydeoxyguanosine levels, induced DNA damage, ERS and apoptosis, and inhibit the secretion and synthesis of testosterone in Leydig cells. These results clarified that ERS pathways triggered by oxidative stress could significantly induce CHOP and caspase-12 activation, which are significantly associated with cell apoptosis. However, oxidative stress and ERS inhibitors significantly inhibited the occurrence of these injuries. In conclusion, PM2.5 triggers the ERS pathway and induces DNA damage in rat testicular cells through oxidative stress, ultimately leading to cellular apoptosis. Furthermore, high-concentration intermittent inhalation was more harmful than low-concentration continuous inhalation when the total mass of PM2.5 exposure was the same.


Endoplasmic Reticulum Stress , Semen , 8-Hydroxy-2'-Deoxyguanosine , Animals , Apoptosis , Caspase 12/metabolism , Lactate Dehydrogenases/metabolism , Male , Oxidative Stress , Particulate Matter/toxicity , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Testosterone
12.
J Ocul Pharmacol Ther ; 38(8): 576-583, 2022 10.
Article En | MEDLINE | ID: mdl-36178959

Purpose: This study aims to compare the cytotoxic, apoptotic, and oxidative effects of preserved and preservative-free forms of brimonidine 0.15% on the human corneal epithelial cell (HCEC) line. Methods: Time-dependent cytotoxicity studies were performed with the Alamar Blue method. For apoptotic studies, PE Annexin V and 7-amino-actinomycin (7-AAD) staining and flow cytometry were performed. Messenger RNA (mRNA) expressions of Bax, Bcl-2, and caspase-3, -9, -12, and protein expressions of Bax and Bcl-2 were evaluated by quantitative real-time polymerase chain reaction and Western blot method, respectively. Results: Cell viability was 76.4% with the preserved solution and 36.05% with the preservative-free solution at the fifth minute. No significant difference was observed with either solution at the 15-min mark, whereas cell viability did not change significantly after 1 h. In the apoptosis evaluation, it was observed that the preservative-free solution increased the early apoptotic activity to a greater degree (P < 0.05). Preservative-free solution also induced gene expression of proapoptotic Bax, caspase-9 and -12, and protein expression of Bax while reducing the protein expression of anti-apoptotic Bcl-2 (P < 0.0001). Preserved solution induced only the gene expression of caspase-12, and reduced the protein expression of Bcl-2 (P < 0.0001). No significant difference was observed in the reactive oxygen species (ROS) levels of either solution compared with the control group (P > 0.05). Conclusion: It was demonstrated that the preserved solution is less cytotoxic to the HCEC line in the early period, has less early apoptotic activity, and does not significantly increase ROS levels.


Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Humans , Caspase 3/metabolism , Caspase 3/pharmacology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Reactive Oxygen Species/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Brimonidine Tartrate/pharmacology , Annexin A5/metabolism , Caspase 12/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Epithelial Cells , Preservatives, Pharmaceutical/pharmacology , Oxidative Stress , RNA, Messenger/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4436-4445, 2022 Aug.
Article Zh | MEDLINE | ID: mdl-36046873

This study aims to investigate the effect of atractylenolide Ⅲ(ATL-Ⅲ) on hydrogen peroxide(H_2O_2)-induced endoplasmic reticulum stress and apoptosis of H9 c2 cells via the ROS/GRP78/caspase-12 signaling pathway.The binding activity of ATL-Ⅲ to GRP78 was determined by molecular docking.The result showed that ATL-Ⅲ had a good binding activity to GRP78, and the binding activity of ATL-Ⅲ was stronger than that of its specific inhibitor.The endoplasmic reticulum stress model of H9 c2 was established by H_2O_2(100 µmol·L~(-1)) treatment.Five groups were designed: blank control group, model group, and ATL-Ⅲ(15, 30, and 60 µmol·L~(-1)) groups.Apoptosis was detected by Hoechst/PI double staining and flow cytometry.The levels of superoxide dismutase(SOD), malondialdehyde(MDA), and lactate dehydrogenase(LDH) were measured by colorimetry.The levels of reactive oxygen species(ROS) and calcium(Ca~(2+)) in cytoplasm were determined by the fluorescence probe DCFH-DA and the calcium fluorescence probe Flou-4, respectively.The protein levels of GRP78, caspase-12, and caspase-3 were determined by Western blot, and the mRNA levels of GRP78 and caspase-12 by RT-qPCR.N-acetyl-L-cysteine(NAC) and 4-phenylbutyric acid(4-PBA) were respectively used to inhibit ROS and GRP78, and then the mechanism of ATL-Ⅲ in protecting the cells from endoplasmic reticulum stress induced by H_2O_2 were deduced.ATL-Ⅲ(15, 30, and 60 µmol·L~(-1)) decreased the apoptosis rate and ROS, MDA, and LDH levels(P<0.01), increased the SOD activity(P<0.01), and down-regulated the protein levels of GRP78, caspase-12, and caspase-3 and the mRNA levels of GRP78 and caspase-12(P<0.05).The addition of NAC decreased the apoptosis rate and ROS, MDA, GRP78, caspase-12, and caspase-3 levels(P<0.01), while it elevated the SOD level(P<0.01).The addition of 4-PBA also decreased the apoptosis rate and the levels of GRP78, caspase-12, caspase-3, and Ca~(2+)(P<0.01).The effect of inhibitors were consistent with that of ATL-Ⅲ.In conclusion, ATL-Ⅲ can protect H9 c2 cardiomyocytes by regulating ROS/GRP78/caspase-12 signaling pathway to inhibit H_2O_2-induced endoplasmic reticulum stress and apoptosis.


Calcium , Endoplasmic Reticulum Chaperone BiP , Apoptosis , Calcium/pharmacology , Caspase 12/genetics , Caspase 12/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Endoplasmic Reticulum Stress , Lactones , Molecular Docking Simulation , RNA, Messenger , Reactive Oxygen Species/metabolism , Sesquiterpenes , Signal Transduction , Superoxide Dismutase/metabolism
14.
In Vitro Cell Dev Biol Anim ; 58(8): 669-678, 2022 Sep.
Article En | MEDLINE | ID: mdl-36006589

We aimed to explore the effects of myeloid-derived growth factor (Mydgf) on the regulation of hypoxia/reoxygenation (HR)-induced apoptosis of cardiac microvascular endothelial cells (CMECs). CMECs were exposed to hypoxia for 24 h and reoxygenation for 6 h to establish an HR cell model. Subsequently, an adenovirus was used to overexpress Mydgf in CMECs. Flow cytometry and TUNEL staining were used to detect the extent of apoptosis, whereas qPCR was used to detect the relative expression of Mydgf mRNA. Western blotting was also performed to detect the expression of apoptosis-related proteins and endoplasmic reticulum stress (ERS)-related proteins, including C/EBP Homologous Protein (CHOP), glucose-regulated protein 78 (GRP 78), and cleaved Caspase-12. The endoplasmic reticulum stress agonist tunicamycin (TM) was used to stimulate CMECs for 24 h as a rescue experiment for Mydgf. Flow cytometry revealed that the HR model effectively induced endothelial cell apoptosis, whereas qPCR and western blotting showed that Mydgf mRNA and protein levels decreased significantly after HR treatment (P < 0.05). Overexpression of Mydgf in cells effectively reduced apoptosis after HR. Furthermore, western blotting showed that HR induced a significant upregulation of CHOP, GRP78, and cleaved-Caspase-12 expression in CMECs, whereas HR-treated cells downregulated the expression of CHOP, GRP78, and cleaved-Caspase-12 after Mydgf overexpression. Under HR conditions, TM significantly reversed the protective effect of Mydgf on CMECs. Mydgf may reduce CMEC apoptosis induced by HR by regulating oxidative stress in ERS.


Endothelial Cells , Animals , Apoptosis/genetics , Caspase 12/genetics , Caspase 12/metabolism , Cell Hypoxia/genetics , Endoplasmic Reticulum Stress , Hypoxia/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , RNA, Messenger/metabolism , Tunicamycin
15.
J Nutr Biochem ; 109: 109118, 2022 11.
Article En | MEDLINE | ID: mdl-35933022

Genistein (GS), an isoflavone compound found in soybean, plays a neuroprotective role in Alzheimer's disease (AD). However, the mechanism of its action remains unclear. Herein, binding ability between GS and GRP78 was predicted by molecular docking, and the effect of GS in vivo and vitro were further studied. In this study, the effects of GS on learning and memory ability, changes of hippocampal neurons and ultrastructure of hippocampal CA3 region in AD rats were investigated. Besides, the protein or mRNA levels of the related proteins were detected. The results showed GS could effectively improve the learning and the memory ability, reduce the damage of hippocampal neurons, and decrease the protein or mRNA expression levels of GRP78, CHOP, Caspase-12, Cle-Caspase-9, Cle-Caspase-3, PERK, and p-PERK. Taken together, our data reveal GS has a neuroprotective effect by inhibiting the ERS-mediated apoptotic pathway, which may be a new therapeutic target for the treatment of AD.


Alzheimer Disease , Neuroprotective Agents , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Apoptosis , Caspase 12/genetics , Caspase 12/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Endoplasmic Reticulum Stress , Genistein/pharmacology , Genistein/therapeutic use , Heat-Shock Proteins/metabolism , Memory Disorders/drug therapy , Memory Disorders/etiology , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , RNA, Messenger , Rats , Transcription Factor CHOP/metabolism
16.
J Drug Target ; 30(10): 1076-1087, 2022 12.
Article En | MEDLINE | ID: mdl-35722944

We aimed to investigate the effects and mechanism of Atorvastatin on Myocardial Ischaemia-Reperfusion Injury in vitro and in vivo. The effects of Atorvastatin on Silent information regulator l (SIRT1) and endoplasmic reticulum (ER) stress were investigated in Myocardial ischaemia-reperfusion (MI/R) injury rat model and hypoxia/reoxygenation (H/R)-treated H9c2 cells. Pathological changes, inflammatory and heart injury markers, cell apoptosis and cell death, SIRT1 and cleaved Caspase-12 expressions, and ER stress relative proteins were measured through HE, enzyme-linked immunosorbent assay, quantitative TUNEL and flow cytometry, immunofluorescence and Western blotting with the assistance of the SIRT1 specific inhibitor EX527 and ER stress pathway blocker treatment. The results of our study demonstrated that atorvastatin treatment attenuated MI/R and H/R mediated inflammatory and heart injury markers, cell apoptosis and cell death, SIRT1 and cleaved Caspase-12 expressions, and ER stress relative protein levels. Finally, we found that atorvastatin reversed SIRT1 expression and blockade the ER stress pathway and increase the cardiomyocytes survival rate in the presence of MI/R and H/R. Our findings provided a new rationale for subsequent academic and clinical research on MI/R injury.


Heart Injuries , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Endoplasmic Reticulum Stress , Sirtuin 1/metabolism , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Atorvastatin/metabolism , Up-Regulation , Caspase 12/metabolism , Apoptosis , Myocytes, Cardiac , Heart Injuries/metabolism , Heart Injuries/pathology
17.
Medicine (Baltimore) ; 101(13): e29130, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35421066

ABSTRACT: To study the relationship between miR-148a and preeclampsia (PE), and clarify that miR-148a can regulate the endoplasmic reticulum stress (ERS) of placental trophoblasts by targeting the ERS protein X box binding protein 1 (XBP1).Fifty patients with hypertension during pregnancy, patients with mild PE, patients with severe PE, and normal pregnant women were selected, and their placental tissues were collected. RT-polymerase chain reaction was used to detect the expression of miR-148a in placental tissues, and Western blot was used to detect XBP1 in placental tissues. Compare the expression differences of miR-148a and XBP1 in each group, and analyze the correlation between the expressions of the two.Compared with the Neg-miR group, MTT experiment result in pre-miR-148a group was decreased. MTT experiment result in anti-miR-148a group was increased. Cell cycle test result in pre-miR-148a group [G1 (%)] was increased. Cell cycle test result in anti-miR-148a group [S (%)] was increased. Apoptosis test result in pre-miR-148a group [early apoptotic cells (%), late apoptotic cells (%)] was increased. Apoptosis test result in anti-miR-148a group [early apoptotic cells (%), late apoptotic cells (%)] was decreased. XBP1 expression result in pre-miR-148a group was increased. XBP1 expression result in anti-miR-148a group was decreased. Compared with the normal population, XBP1 is expressed in hypertension, mild eclampsia, severe eclampsia increased. GRP78, CHOP, and caspase-12 expression result in pre-miR-148a group was increased. GRP78, CHOP, and caspase-12 expression result in anti-miR-148a group was decreased.miR-148a can regulate the ERS-mediated apoptosis by targeting XBP1, thereby intervening in the occurrence and development of PE.


Eclampsia , Hypertension , MicroRNAs , Pre-Eclampsia , Antagomirs/metabolism , Apoptosis/genetics , Caspase 12/metabolism , Cell Movement , Endoplasmic Reticulum Stress/genetics , Female , Humans , Hypertension/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pregnancy , Trophoblasts/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
18.
J Spinal Cord Med ; 45(4): 595-604, 2022 07.
Article En | MEDLINE | ID: mdl-33830903

OBJECTIVE: To investigate the effect of honokiol on demyelination after compressed spinal cord injury (CSCI) and it's possible mechanism. DESIGN: Animal experiment study. SETTING: Institute of Neuroscience of Chongqing Medical University. INTERVENTIONS: Total of 69 Sprague-Dawley (SD) rats were randomly divided into 3 groups: sham group (n=15), honokiol group (n=27) and vehicle group (n=27). After established CSCI model by a custom-made compressor successfully, the rats of sham group were subjected to the limited laminectomy without compression; the rats of honokiol group were subjected to CSCI surgery and intraperitoneal injection of 20 mg/kg honokiol; the rats of vehicle group were subjected to CSCI surgery and intraperitoneal injection of an equivalent volume of saline.Outcome measures: The locomotor function of each group was assessed using the Basso, Beattie and Bresnahan (BBB) rating scale. The pathological changes of myelinated nerve fibers of spinal cord in 3 groups were detected by osmic acid staining and transmission electron microcopy (TME). Immunofluorescence and Western blot were used to research the experessions of active caspase-3, caspase-12, cytochrome C and myelin basic protein (MBP) respectively. RESULTS: In the vehicle group, the rats became paralyzed and spastic after injury, and the myelin sheath became swollen and broken down along with decreased number of myelinated nerve fibers. Western blot analysis manifested that active caspase-3, caspase-12 and cytochrome C began to increase 1 d after injury while the expression of MBP decreased gradually. After intervened with honokiol for 6 days, compared with the vehicle group, the locomotor function and the pathomorphological changes of myelin sheath of the CSCD rats were improved with obviously decreased expression of active caspase-3, caspase-12 and cytochrome C. CONCLUSIONS: Honokiol may improve locomotor function and protect neural myelin sheat from demyelination via prevention oligodendrocytes (OLs) apoptosis through mediate endoplasmic reticulum (ER)-mitochondria pathway after CSCI.


Demyelinating Diseases , Spinal Cord Injuries , Animals , Apoptosis , Biphenyl Compounds , Caspase 12/metabolism , Caspase 3/metabolism , Cytochromes c/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Humans , Lignans , Mitochondria/metabolism , Mitochondria/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology , Spinal Cord Injuries/pathology
19.
Toxicol Appl Pharmacol ; 432: 115753, 2021 12 01.
Article En | MEDLINE | ID: mdl-34637808

T-2 toxin is a highly toxic trichothecene that can induce toxic effects in a variety of organs and tissues, but the pathogenesis of its nephrotoxicity has not been elucidated. In this study, we assessed the involvement of protein kinase RNA-like ER kinase (PERK)-mediated endoplasmic reticulum (ER) stress and apoptosis in PK-15 cells cultured at different concentrations of T-2 toxin. Cell viability, antioxidant capacity, intracellular calcium (Ca2+) content, apoptotic rate, levels of ER stress, and apoptosis-related proteins were studied. T-2 toxin inhibited cell proliferation; increased the apoptosis rate; and was accompanied by increased cleaved caspase-3 expression, altered intracellular oxidative stress marker levels, and intracellular Ca2+ overloading. The ER stress inhibitor 4-phenylbutyrate (4-PBA) and PERK selective inhibitor GSK2606414 prevented the decrease of cell activity and apoptosis caused by T-2 toxin. The altered expression of glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 proved that ER stress was involved in cell injury triggered by T-2 toxin. T-2 toxin activated the phosphorylation of PERK and the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and upregulated the activating transcription factor 4 (ATF4), thereby triggering ER stress via the GRP78/PERK/CHOP signaling pathway. This study provides a new perspective for understanding the nephrotoxicity of T-2 toxin.


Activating Transcription Factor 4/metabolism , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/drug effects , Eukaryotic Initiation Factor-2/metabolism , Kidney Diseases/chemically induced , Kidney/drug effects , T-2 Toxin/toxicity , eIF-2 Kinase/metabolism , Animals , Apoptosis/drug effects , Caspase 12/metabolism , Cell Line , Endoplasmic Reticulum Chaperone BiP/metabolism , Epithelial Cells/enzymology , Epithelial Cells/pathology , Kidney/enzymology , Kidney/pathology , Kidney Diseases/enzymology , Kidney Diseases/pathology , Oxidative Stress/drug effects , Signal Transduction , Sus scrofa , Transcription Factor CHOP/metabolism
20.
J Neurophysiol ; 126(5): 1740-1750, 2021 11 01.
Article En | MEDLINE | ID: mdl-34644182

We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on caspase-8 and -9 but not on caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links is needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.NEW & NOTEWORTHY ER stress induced by autophagy mediates caspase-8- and caspase-9-dependent apoptosis pathways by regulating CHOP in neurons exposed to OGD/R. We hypothesized that the autophagy-BiP-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons.


Apoptosis/physiology , Autophagy/physiology , Caspase 12/metabolism , Cerebral Cortex/metabolism , Endoplasmic Reticulum Stress/physiology , Neurons/metabolism , Transcription Factor CHOP/metabolism , Animals , Cells, Cultured , Glucose/metabolism , Mice , Oxygen/metabolism
...